Effects of pyocyanine, a phenazine dye from Pseudomonas aeruginosa, on oxidative burst and bacterial killing in human neutrophils.
نویسندگان
چکیده
The effects of pyocyanine (phenazinium, 1-hydroxy-5-methyl-hydroxide, inner salt) on oxidative burst in human polymorphonuclear leukocytes were studied by several different approaches. In a cell- and enzyme-free system, pyocyanine oxidized NADPH. The reduced pyocyanine could be measured by its reaction with ferricytochrome c. It was shown by this assay that resting as well as phorbol myristate acetate- or zymosan-stimulated granulocytes reduced pyocyanine. The effect was independent of mitochondria, as cytoplasts were similarly active. Measurement of the hexose monophosphate shunt in intact granulocytes in the presence of pyocyanine indicated a concentration-dependent activation of the shunt without the generation of O2-, suggesting that pyocyanine oxidizes NADPH to NADP+ when it enters granulocytes. Intracellular NADPH in granulocytes was indeed lowered by almost 40% after incubation with pyocyanine. It is by this shuttling of reduction equivalents, leading to the partial depletion of NADPH, that pyocyanine affects the observed concentration-dependent partial inhibition of the phorbol myristate acetate- and zymosan-stimulated generation of O2-. A further consequence was that the intracellular killing of Staphylococcus aureus was also partially suppressed, particularly at higher loads of granulocytes with bacteria. Phagocytosis was not inhibited by pyocyanine concentrations as high as 500 microM. Pyocyanine did not affect the intracellular killing of Pseudomonas aeruginosa. The possible relevance of these findings to the course of mixed hospital infections in immunocompromised patients is discussed.
منابع مشابه
Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection.
Pseudomonas aeruginosa colonizes and infects human tissues, although the mechanisms by which the organism evades the normal, predominantly neutrophilic, host defenses are unclear. Phenazine products of P. aeruginosa can induce death in Caenorhabditis elegans. We hypothesized that phenazines induce death of human neutrophils, and thus impair neutrophil-mediated bacterial killing. We investigated...
متن کاملIn vitro effect of synthetic pyocyanine on neutrophil superoxide production.
Pyocyanine, a low-molecular-weight phenazine pigment produced by Pseudomonas aeruginosa, has previously been shown to strongly inhibit human lymphocyte blastogenesis. We now report that synthetic pyocyanine can also affect the generation of superoxide by human peripheral blood polymorphonuclear leukocytes (PMNs) in a dose-dependent manner. Superoxide production by PMNs stimulated with phorbol m...
متن کاملPyocyanine Biosynthetic Genes in Clinical and Environmental Isolates of Pseudomonas aeruginosa and Detection of Pyocyanine’s Antimicrobial Effects with or without Colloidal Silver Nanoparticles
OBJECTIVE Pyocyanine plays an important role in the pathogenesis of Pseudomonas aeruginosa, (P. aeruginosa) and is known to have inhibitory and bactericidal effects. This study has aimed to detect the phenazine biosynthetic operon (phz ABCDEFG) and two phenazine modifying genes (phzM and phzS) by polymerase chain reaction (PCR) and detection of its possible protein bands by sodium dodecyl sulfa...
متن کاملClindamycin, erythromycin, and roxithromycin inhibit the proinflammatory interactions of Pseudomonas aeruginosa pigments with human neutrophils in vitro.
The Pseudomonas aeruginosa-derived phenazine pigments pyocyanin and 1-hydroxyphenazine (1-hp) prime human neutrophils for enhanced, stimulus-activated release of superoxide and myeloperoxidase (MPO), respectively. In the present study, the modulatory potentials of the antimicrobial agents clindamycin, erythromycin, and roxithromycin (10 and 20 micrograms/ml) on the prooxidative interactions of ...
متن کاملPattern of phenazine pigment production by a strain of Pseudomonas aeruginosa.
An atypical strain of Pseudomonas aeruginosa capable of synthesizing three phenazine pigments was isolated. Cultural conditions, under which the strain forms either chlororaphin, oxychlororaphin, or pyocyanine, are described. This broad spectrum of pigment production, as well as some other characteristics, sets this strain apart from previously described chlororaphin producers.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 57 9 شماره
صفحات -
تاریخ انتشار 1989